Summary of sea scallop benchmark assessment for 2009 (SARC-50)

Updated assessment for 2010

Calculation of sea scallop ABC for 2011 and 2012

Dvora Hart
NEFSC, Woods Hole MA

Sea Scallop Benchmark Assessment Main terms of reference

1.Surveys, especially survey calibration
2.Estimation of sea scallop biomass and fishing mortality for 2009 and previous years
3.Estimation of reference points (FMSY and BMSY)
4.Forecasting methodology

The NEFSC sea scallop survey was conducted (except for 1990-1992) through 2007 on the R / V Albatross IV. Since 2008, it has been conducted on the R/V Hugh Sharp. The Sharp uses a slightly redesigned dredge

The R / V Albatross IV was calibrated in 2007 with a commercial fishing vessel, the F/V Nordic Pride. R/V Hugh Sharp was compared to F/V Nordic Pride in 2009
The comparisons suggest slightly greater catches on the Sharp than the Albatross IV or Nordic Pride (Appendix 4 - D. Rudders et al VIMS)

1-1 line indicated in red

Analysis of dredge sensor data indicate that dredges on the Sharp fish for longer than their nominal tow time, and have about a 5\% longer tow path than that of the Albatross IV. This, combined with the calibration with the Nordic Pride, suggest a 5\% downward adjustment for Sharp catches.

Station 341 Towtime $=16.95 \mathbf{~ m i n}$

140 paired tows between survey dredge and HabCam towed camera system (Appendix 10)
Estimated efficiency:
0.38 (hard bottom)
0.44 (soft bottom) Commercial dredges are 3040\% more efficient on large scallops

Other survey issues discussed:

Fraction of scallop biomass missed by standard scallop survey strata
~10\% in Mid-Atlantic and 3\% on Georges
Bank
Edge effects on SMAST survey

NEFSC dredge survey
abundance

Georges Bank

Mid-Atlantic

NEFSC dredge survey shell

Georges Bank

SMAST Survey

Large Camera

Small Camera

Georges Bank

Mid-
Atlantic

Estimation of sea scallop biomass and fishing mortality for 2009 and previous years

Like the last assessment, a statistical catch-atsize model (CASA) was employed Inputs: Surveys, landings, commercial shell heights and meat weights (from observers), growth increments from shell ring analysis
Outputs: Estimates of fishing mortality and selectivity, biomass and abundance etc

Some changes in estimates of life history parameters

New estimates: $\mathrm{M}=0.12$ (Georges Bank), $\mathrm{M}=0.15$ (MidAtlantic), compared to previous estimates of $\mathrm{M}=0.1$ in both regions Incidental mortality increased to 0.2 (Georges Bank) and 0.1 (Mid-Atlantic) of fully-recruited fishing mortality (compared to 0.15 and 0.04 previously).

The new assumptions reduce the productivity potential of the stock, and likely will result in less (over) optimistic projections.

Fishery selectivity continues to shift towards larger scallops (Full) fishing mortality estimates only apply to largest (fully recruited, currently $130+\mathrm{mm}$) sizes.

Mid-Atlantic

Georges Bank

Biomass

Abundance 40+

Fishing mortality

Fishing Mortality at Shell Height

Comparison of model abundance and biomass estimates to survey estimates

Comparison of model estimates of fishing mortality/exploitation to simple empirical models

CASA vs Beverton-Holt equilibrium
length-based estimator

Mid-Atlantic

Recruitment

Biomass

Abundance 40+

Fishing mortality

Number at shell height

Fishing mortality at $80,100,120 \mathrm{~mm} \mathrm{SH}$

Comparison of model abundance and biomass estimates to survey estimates

Comparison of model estimates of fishing mortality/exploitation to simple empirical models

CASA vs Beverton-Holt equilibrium length-based estimator

Exploitation indices
\# caught/population > 80 mm

Region

Georges Bank
Mid-Atlantic
Combined

Full F Abundance Biomass millions mt meats
$0.18 \quad 3453 \quad 62,470$
$0.603993 \quad 67,233$
0.387446 129,703

Reference points (SYM model)

Previous assessments estimated proxy per recruit reference points

This assessment introduced a new stochastic yield model, which takes into account uncertainties in input parameters to per recruit and stock-recruit calculations to obtain estimates of MSY, FMSY and BMSY together with their uncertainties

25 example YPR curves constructed by Monte-Carlo simulation

Red line is mean (expected) YPR

Mid-Atlantic

Georges Bank

Mid-Atlantic

Georges Bank

Deterministic spawner-recruit relationships

Mid-Atlantic
Georges Bank

Stochastic stock-recruit curves

Mid-Atlantic

Stochastic yield curves

Mid-Atlantic

Georges Bank

Distributions of $\mathrm{F}_{\text {MSY }}$

Georges Bank

Distributions of $\mathrm{B}_{\mathrm{MSY}}$

Mid-Atlantic

Georges Bank

Median Yield Curves

TOR 5. Evaluate stock status with respect to the existing BRPs, as well as with respect to updated or redefined BRPs (from TOR 4).

Overfished (biomass) status determination:

Estimated biomass in 2009 from CASA: 129,703 mt (July 1)
Estimated $\mathrm{B}_{\text {MSY }}$ from SYM: $\quad 125,358 \mathrm{mt}$

Biomass (overfished) threshold: $1 / 2 \mathrm{~B}_{\mathrm{MSY}}=62,679 \mathrm{mt}$
Thus, sea scallop biomass was above its biomass target in 2009, and over twice the threshold biomass.
Therefore, sea scallops were not overfished in 2009

The same conclusion would be reached using previous reference point methods

Fishing mortality (overfishing) status determination:
$\begin{array}{ll}\text { Estimated fishing mortality in } 2009 \text { from CASA: } & 0.38(0.378) \\ \text { Estimated } \mathrm{F}_{\text {MSY }} \text { from SYM: } & 0.38\end{array}$

Since fishing mortality in 2009 was not above the estimated $\mathrm{F}_{\mathrm{MSY}}$ overfishing did not occur in 2009

Using the "traffic light" approach, biomass of sea scallops has a green light, whereas fishing mortality has a yellow light

Example projection assuming status-quo management Note that these are less optimistic than earlier projections

Some cautionary notes

Estimate of MSY assumes that the high recent recruitment in the Mid-Atlantic can be sustained by keeping the biomass high. If the Mid-Atlantic reverts to a more unproductive state, long-term MSY may be much lower
Retrospective pattern in Mid-Atlantic suggests that about 10-20\% of the mortality is unaccounted for (incidental, discard, natural mortality all possibilities)
Recruitment in the Mid-Atlantic in 2009 and probably 2010 were poor - potentially a bad sign
Although recruitment on Georges Bank has been strong the last three years, scallop recruitment in this region tends to be cyclical some years of weak recruitment may be due
Because 2009 fishing mortality bordered on overfishing, allocations for 2011-2012 will probably need to be less than 2009

2010 NEFSC sea scallop survey

Conducted on R/V Hugh Sharp for 3rd year

Beside regular survey, several experimental studies were performed (camera tows, duplicate tows, time trials)

Biomass

Recruitment

Preliminary 2010 Updated CASA model

Uses 2010 survey data and estimated 2010 landings. Otherwise configured as in SARC-50

	Year	MA	GB	Total
Estimated landings	2009	19350	6695	26045
	2010	16000	7500	23500

Comparison of estimated biomass between SARC-50 and updated CASA models on Georges Bank

Biomass estimates from surveys and CASA model on Georges Bank

Comparison of estimated biomass between SARC-50 and updated CASA models in the MidAtlantic

Biomass estimates from surveys and CASA model in the MidAtlantic

Recommended method of determining ABCs for sea scallops

Sources of uncertainty for overfishing

Uncertainty in reference point - estimated by SYM

Uncertainty in projected F - assumed to have SE of 0.06 for short term projections

Effects of uncertainty in fishing mortality on expected yield Lack of precision in F results in loss of yield for low Fs

Effects of uncertainty in fishing mortality on overfishing risk Lack of precision in F increases overfishing risk at low F, decreases it slightly for high F

Probability of overfishing and expected loss of yield assuming no error in fishing mortality
$\mathrm{F}=0.33$ has about a 0.25 probability of overfishing

Probability of overfishing and expected loss of yield assuming error in fishing mortality
Target $F=0.32$ has about a 0.25 probability of overfishing Probability of 0.15 of realized F being above 0.38

Calculation of ABCs for 2011 and 2012

Initialized with populations at the end of 2010 estimated by the updated CASA model

Population projected forward for two years, assuming an overall $F=0.32$ each year

Fishing mortality in the Mid-Atlantic was assumed to be twice that in Georges Bank. Fishing mortality within the regions was assumed spatially uniform

No new recruitment was added - recruitment in 2011 would not recruit to the fishery until 2013

Results

Year Landings Discards Catch ExplBms
2010
$201127269 \quad 40093127973475$
20122896142733323483594

Some caveats

When fishing mortality varies spatially, there is not a 11 correspondence between overall fishing mortality and landings - landings at a given F depend on the spatial effort distribution. The effort distribution in turn depends on policy decisions not yet made by the Council. Spatially explicit simulations will be done to inform on these decisions.

Because of these spatial management issues as well as uncertainties in projections, target fishing mortalities and landings should be well below the ABC levels

